G = C24⋊A4 order 192 = 26·3
metabelian, soluble, monomial
Aliases:
C24⋊3A4,
C24⋊(C2×C6),
C22≀C2⋊C6,
C23.6(C2×A4),
C24⋊C6⋊1C2,
C22⋊A4⋊1C22,
C24⋊C22⋊1C3,
C22.6(C22×A4),
SmallGroup(192,1009)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24⋊A4
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g3=1, ab=ba, faf=ac=ca, ad=da, eae=acd, ag=ga, ebe=bc=cb, fbf=bd=db, bg=gb, gcg-1=cd=dc, ce=ec, cf=fc, de=ed, df=fd, gdg-1=c, geg-1=ef=fe, gfg-1=e >
Subgroups: 374 in 70 conjugacy classes, 16 normal (7 characteristic)
C1, C2, C3, C4, C22, C22, C6, C2×C4, D4, Q8, C23, C23, A4, C2×C6, C42, C22⋊C4, C2×D4, C2×Q8, C24, C2×A4, C22≀C2, C22≀C2, C4.4D4, C22×A4, C22⋊A4, C24⋊C22, C24⋊C6, C24⋊A4
Quotients: C1, C2, C3, C22, C6, A4, C2×C6, C2×A4, C22×A4, C24⋊A4
Character table of C24⋊A4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | |
size | 1 | 3 | 4 | 4 | 4 | 12 | 16 | 16 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | -1 | 1 | -1 | ζ65 | ζ65 | ζ32 | ζ3 | ζ6 | ζ6 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ7 | 1 | 1 | -1 | 1 | -1 | 1 | ζ32 | ζ3 | -1 | -1 | 1 | ζ65 | ζ3 | ζ6 | ζ65 | ζ6 | ζ32 | linear of order 6 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | -1 | 1 | -1 | ζ6 | ζ6 | ζ3 | ζ32 | ζ65 | ζ65 | linear of order 6 |
ρ9 | 1 | 1 | -1 | 1 | -1 | 1 | ζ3 | ζ32 | -1 | -1 | 1 | ζ6 | ζ32 | ζ65 | ζ6 | ζ65 | ζ3 | linear of order 6 |
ρ10 | 1 | 1 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | 1 | -1 | -1 | ζ3 | ζ65 | ζ6 | ζ65 | ζ32 | ζ6 | linear of order 6 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ12 | 1 | 1 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | 1 | -1 | -1 | ζ32 | ζ6 | ζ65 | ζ6 | ζ3 | ζ65 | linear of order 6 |
ρ13 | 3 | 3 | -3 | -3 | 3 | -1 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ14 | 3 | 3 | -3 | 3 | -3 | -1 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ15 | 3 | 3 | 3 | -3 | -3 | -1 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ16 | 3 | 3 | 3 | 3 | 3 | -1 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ17 | 12 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
Permutation representations of C24⋊A4
►On 16 points - transitive group
16T417Generators in S
16
(1 2)(3 4)(5 13)(6 11)(7 12)(8 14)(9 15)(10 16)
(1 4)(2 3)(5 15)(6 16)(7 14)(8 12)(9 13)(10 11)
(1 5)(2 13)(3 9)(4 15)(6 7)(8 10)(11 12)(14 16)
(1 6)(2 11)(3 10)(4 16)(5 7)(8 9)(12 13)(14 15)
(1 5)(2 11)(3 8)(6 7)(9 10)(12 13)
(1 6)(2 12)(3 9)(5 7)(8 10)(11 13)
(5 6 7)(8 9 10)(11 12 13)(14 15 16)
G:=sub<Sym(16)| (1,2)(3,4)(5,13)(6,11)(7,12)(8,14)(9,15)(10,16), (1,4)(2,3)(5,15)(6,16)(7,14)(8,12)(9,13)(10,11), (1,5)(2,13)(3,9)(4,15)(6,7)(8,10)(11,12)(14,16), (1,6)(2,11)(3,10)(4,16)(5,7)(8,9)(12,13)(14,15), (1,5)(2,11)(3,8)(6,7)(9,10)(12,13), (1,6)(2,12)(3,9)(5,7)(8,10)(11,13), (5,6,7)(8,9,10)(11,12,13)(14,15,16)>;
G:=Group( (1,2)(3,4)(5,13)(6,11)(7,12)(8,14)(9,15)(10,16), (1,4)(2,3)(5,15)(6,16)(7,14)(8,12)(9,13)(10,11), (1,5)(2,13)(3,9)(4,15)(6,7)(8,10)(11,12)(14,16), (1,6)(2,11)(3,10)(4,16)(5,7)(8,9)(12,13)(14,15), (1,5)(2,11)(3,8)(6,7)(9,10)(12,13), (1,6)(2,12)(3,9)(5,7)(8,10)(11,13), (5,6,7)(8,9,10)(11,12,13)(14,15,16) );
G=PermutationGroup([[(1,2),(3,4),(5,13),(6,11),(7,12),(8,14),(9,15),(10,16)], [(1,4),(2,3),(5,15),(6,16),(7,14),(8,12),(9,13),(10,11)], [(1,5),(2,13),(3,9),(4,15),(6,7),(8,10),(11,12),(14,16)], [(1,6),(2,11),(3,10),(4,16),(5,7),(8,9),(12,13),(14,15)], [(1,5),(2,11),(3,8),(6,7),(9,10),(12,13)], [(1,6),(2,12),(3,9),(5,7),(8,10),(11,13)], [(5,6,7),(8,9,10),(11,12,13),(14,15,16)]])
G:=TransitiveGroup(16,417);
►On 16 points - transitive group
16T419Generators in S
16
(5 13)(6 11)(7 12)(8 14)(9 15)(10 16)
(5 8)(6 9)(7 10)(11 15)(12 16)(13 14)
(1 4)(2 3)(5 13)(6 15)(7 10)(8 14)(9 11)(12 16)
(1 2)(3 4)(5 8)(6 11)(7 16)(9 15)(10 12)(13 14)
(1 12)(2 10)(3 7)(4 16)(5 9)(6 14)(8 15)(11 13)
(1 13)(2 14)(3 8)(4 5)(6 10)(7 15)(9 16)(11 12)
(2 3 4)(5 6 7)(8 9 10)(11 12 13)(14 15 16)
G:=sub<Sym(16)| (5,13)(6,11)(7,12)(8,14)(9,15)(10,16), (5,8)(6,9)(7,10)(11,15)(12,16)(13,14), (1,4)(2,3)(5,13)(6,15)(7,10)(8,14)(9,11)(12,16), (1,2)(3,4)(5,8)(6,11)(7,16)(9,15)(10,12)(13,14), (1,12)(2,10)(3,7)(4,16)(5,9)(6,14)(8,15)(11,13), (1,13)(2,14)(3,8)(4,5)(6,10)(7,15)(9,16)(11,12), (2,3,4)(5,6,7)(8,9,10)(11,12,13)(14,15,16)>;
G:=Group( (5,13)(6,11)(7,12)(8,14)(9,15)(10,16), (5,8)(6,9)(7,10)(11,15)(12,16)(13,14), (1,4)(2,3)(5,13)(6,15)(7,10)(8,14)(9,11)(12,16), (1,2)(3,4)(5,8)(6,11)(7,16)(9,15)(10,12)(13,14), (1,12)(2,10)(3,7)(4,16)(5,9)(6,14)(8,15)(11,13), (1,13)(2,14)(3,8)(4,5)(6,10)(7,15)(9,16)(11,12), (2,3,4)(5,6,7)(8,9,10)(11,12,13)(14,15,16) );
G=PermutationGroup([[(5,13),(6,11),(7,12),(8,14),(9,15),(10,16)], [(5,8),(6,9),(7,10),(11,15),(12,16),(13,14)], [(1,4),(2,3),(5,13),(6,15),(7,10),(8,14),(9,11),(12,16)], [(1,2),(3,4),(5,8),(6,11),(7,16),(9,15),(10,12),(13,14)], [(1,12),(2,10),(3,7),(4,16),(5,9),(6,14),(8,15),(11,13)], [(1,13),(2,14),(3,8),(4,5),(6,10),(7,15),(9,16),(11,12)], [(2,3,4),(5,6,7),(8,9,10),(11,12,13),(14,15,16)]])
G:=TransitiveGroup(16,419);
►On 24 points - transitive group
24T369Generators in S
24
(4 8)(5 9)(6 7)(16 19)(17 20)(18 21)
(10 15)(11 13)(12 14)(16 19)(17 20)(18 21)
(2 24)(3 22)(5 9)(6 7)(10 15)(11 13)(17 20)(18 21)
(1 23)(3 22)(4 8)(6 7)(11 13)(12 14)(16 19)(18 21)
(1 8)(2 20)(3 11)(4 23)(5 15)(6 18)(7 21)(9 10)(12 19)(13 22)(14 16)(17 24)
(1 12)(2 9)(3 21)(4 16)(5 24)(6 13)(7 11)(8 19)(10 20)(14 23)(15 17)(18 22)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
G:=sub<Sym(24)| (4,8)(5,9)(6,7)(16,19)(17,20)(18,21), (10,15)(11,13)(12,14)(16,19)(17,20)(18,21), (2,24)(3,22)(5,9)(6,7)(10,15)(11,13)(17,20)(18,21), (1,23)(3,22)(4,8)(6,7)(11,13)(12,14)(16,19)(18,21), (1,8)(2,20)(3,11)(4,23)(5,15)(6,18)(7,21)(9,10)(12,19)(13,22)(14,16)(17,24), (1,12)(2,9)(3,21)(4,16)(5,24)(6,13)(7,11)(8,19)(10,20)(14,23)(15,17)(18,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)>;
G:=Group( (4,8)(5,9)(6,7)(16,19)(17,20)(18,21), (10,15)(11,13)(12,14)(16,19)(17,20)(18,21), (2,24)(3,22)(5,9)(6,7)(10,15)(11,13)(17,20)(18,21), (1,23)(3,22)(4,8)(6,7)(11,13)(12,14)(16,19)(18,21), (1,8)(2,20)(3,11)(4,23)(5,15)(6,18)(7,21)(9,10)(12,19)(13,22)(14,16)(17,24), (1,12)(2,9)(3,21)(4,16)(5,24)(6,13)(7,11)(8,19)(10,20)(14,23)(15,17)(18,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24) );
G=PermutationGroup([[(4,8),(5,9),(6,7),(16,19),(17,20),(18,21)], [(10,15),(11,13),(12,14),(16,19),(17,20),(18,21)], [(2,24),(3,22),(5,9),(6,7),(10,15),(11,13),(17,20),(18,21)], [(1,23),(3,22),(4,8),(6,7),(11,13),(12,14),(16,19),(18,21)], [(1,8),(2,20),(3,11),(4,23),(5,15),(6,18),(7,21),(9,10),(12,19),(13,22),(14,16),(17,24)], [(1,12),(2,9),(3,21),(4,16),(5,24),(6,13),(7,11),(8,19),(10,20),(14,23),(15,17),(18,22)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)]])
G:=TransitiveGroup(24,369);
►On 24 points - transitive group
24T371Generators in S
24
(1 16)(2 17)(3 18)(4 13)(5 14)(6 15)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)
(1 10)(2 11)(3 12)(4 19)(5 20)(6 21)(7 13)(8 14)(9 15)(16 22)(17 23)(18 24)
(2 8)(3 9)(5 23)(6 24)(11 14)(12 15)(17 20)(18 21)
(1 7)(3 9)(4 22)(6 24)(10 13)(12 15)(16 19)(18 21)
(4 22)(6 24)(11 14)(12 15)(16 19)(17 20)
(4 22)(5 23)(10 13)(12 15)(17 20)(18 21)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
G:=sub<Sym(24)| (1,16)(2,17)(3,18)(4,13)(5,14)(6,15)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,10)(2,11)(3,12)(4,19)(5,20)(6,21)(7,13)(8,14)(9,15)(16,22)(17,23)(18,24), (2,8)(3,9)(5,23)(6,24)(11,14)(12,15)(17,20)(18,21), (1,7)(3,9)(4,22)(6,24)(10,13)(12,15)(16,19)(18,21), (4,22)(6,24)(11,14)(12,15)(16,19)(17,20), (4,22)(5,23)(10,13)(12,15)(17,20)(18,21), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)>;
G:=Group( (1,16)(2,17)(3,18)(4,13)(5,14)(6,15)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,10)(2,11)(3,12)(4,19)(5,20)(6,21)(7,13)(8,14)(9,15)(16,22)(17,23)(18,24), (2,8)(3,9)(5,23)(6,24)(11,14)(12,15)(17,20)(18,21), (1,7)(3,9)(4,22)(6,24)(10,13)(12,15)(16,19)(18,21), (4,22)(6,24)(11,14)(12,15)(16,19)(17,20), (4,22)(5,23)(10,13)(12,15)(17,20)(18,21), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24) );
G=PermutationGroup([[(1,16),(2,17),(3,18),(4,13),(5,14),(6,15),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)], [(1,10),(2,11),(3,12),(4,19),(5,20),(6,21),(7,13),(8,14),(9,15),(16,22),(17,23),(18,24)], [(2,8),(3,9),(5,23),(6,24),(11,14),(12,15),(17,20),(18,21)], [(1,7),(3,9),(4,22),(6,24),(10,13),(12,15),(16,19),(18,21)], [(4,22),(6,24),(11,14),(12,15),(16,19),(17,20)], [(4,22),(5,23),(10,13),(12,15),(17,20),(18,21)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)]])
G:=TransitiveGroup(24,371);
►On 24 points - transitive group
24T376Generators in S
24
(7 19)(8 20)(9 21)(13 16)(14 17)(15 18)
(1 4)(2 5)(3 6)(7 17)(8 18)(9 16)(10 22)(11 23)(12 24)(13 21)(14 19)(15 20)
(1 10)(3 12)(4 22)(6 24)(7 19)(8 20)(14 17)(15 18)
(1 10)(2 11)(4 22)(5 23)(8 20)(9 21)(13 16)(15 18)
(2 13)(3 14)(4 22)(5 21)(6 7)(8 20)(9 23)(11 16)(12 17)(19 24)
(1 15)(3 14)(4 8)(5 23)(6 19)(7 24)(9 21)(10 18)(12 17)(20 22)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
G:=sub<Sym(24)| (7,19)(8,20)(9,21)(13,16)(14,17)(15,18), (1,4)(2,5)(3,6)(7,17)(8,18)(9,16)(10,22)(11,23)(12,24)(13,21)(14,19)(15,20), (1,10)(3,12)(4,22)(6,24)(7,19)(8,20)(14,17)(15,18), (1,10)(2,11)(4,22)(5,23)(8,20)(9,21)(13,16)(15,18), (2,13)(3,14)(4,22)(5,21)(6,7)(8,20)(9,23)(11,16)(12,17)(19,24), (1,15)(3,14)(4,8)(5,23)(6,19)(7,24)(9,21)(10,18)(12,17)(20,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)>;
G:=Group( (7,19)(8,20)(9,21)(13,16)(14,17)(15,18), (1,4)(2,5)(3,6)(7,17)(8,18)(9,16)(10,22)(11,23)(12,24)(13,21)(14,19)(15,20), (1,10)(3,12)(4,22)(6,24)(7,19)(8,20)(14,17)(15,18), (1,10)(2,11)(4,22)(5,23)(8,20)(9,21)(13,16)(15,18), (2,13)(3,14)(4,22)(5,21)(6,7)(8,20)(9,23)(11,16)(12,17)(19,24), (1,15)(3,14)(4,8)(5,23)(6,19)(7,24)(9,21)(10,18)(12,17)(20,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24) );
G=PermutationGroup([[(7,19),(8,20),(9,21),(13,16),(14,17),(15,18)], [(1,4),(2,5),(3,6),(7,17),(8,18),(9,16),(10,22),(11,23),(12,24),(13,21),(14,19),(15,20)], [(1,10),(3,12),(4,22),(6,24),(7,19),(8,20),(14,17),(15,18)], [(1,10),(2,11),(4,22),(5,23),(8,20),(9,21),(13,16),(15,18)], [(2,13),(3,14),(4,22),(5,21),(6,7),(8,20),(9,23),(11,16),(12,17),(19,24)], [(1,15),(3,14),(4,8),(5,23),(6,19),(7,24),(9,21),(10,18),(12,17),(20,22)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)]])
G:=TransitiveGroup(24,376);
►On 24 points - transitive group
24T381Generators in S
24
(1 12)(2 10)(3 11)(4 19)(5 20)(6 21)(7 18)(8 16)(9 17)(13 22)(14 23)(15 24)
(1 8)(2 9)(3 7)(4 23)(5 24)(6 22)(10 17)(11 18)(12 16)(13 21)(14 19)(15 20)
(2 24)(3 22)(5 9)(6 7)(10 15)(11 13)(17 20)(18 21)
(1 23)(3 22)(4 8)(6 7)(11 13)(12 14)(16 19)(18 21)
(1 8)(2 20)(3 11)(4 23)(5 15)(6 18)(7 21)(9 10)(12 19)(13 22)(14 16)(17 24)
(1 12)(2 9)(3 21)(4 16)(5 24)(6 13)(7 11)(8 19)(10 20)(14 23)(15 17)(18 22)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
G:=sub<Sym(24)| (1,12)(2,10)(3,11)(4,19)(5,20)(6,21)(7,18)(8,16)(9,17)(13,22)(14,23)(15,24), (1,8)(2,9)(3,7)(4,23)(5,24)(6,22)(10,17)(11,18)(12,16)(13,21)(14,19)(15,20), (2,24)(3,22)(5,9)(6,7)(10,15)(11,13)(17,20)(18,21), (1,23)(3,22)(4,8)(6,7)(11,13)(12,14)(16,19)(18,21), (1,8)(2,20)(3,11)(4,23)(5,15)(6,18)(7,21)(9,10)(12,19)(13,22)(14,16)(17,24), (1,12)(2,9)(3,21)(4,16)(5,24)(6,13)(7,11)(8,19)(10,20)(14,23)(15,17)(18,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)>;
G:=Group( (1,12)(2,10)(3,11)(4,19)(5,20)(6,21)(7,18)(8,16)(9,17)(13,22)(14,23)(15,24), (1,8)(2,9)(3,7)(4,23)(5,24)(6,22)(10,17)(11,18)(12,16)(13,21)(14,19)(15,20), (2,24)(3,22)(5,9)(6,7)(10,15)(11,13)(17,20)(18,21), (1,23)(3,22)(4,8)(6,7)(11,13)(12,14)(16,19)(18,21), (1,8)(2,20)(3,11)(4,23)(5,15)(6,18)(7,21)(9,10)(12,19)(13,22)(14,16)(17,24), (1,12)(2,9)(3,21)(4,16)(5,24)(6,13)(7,11)(8,19)(10,20)(14,23)(15,17)(18,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24) );
G=PermutationGroup([[(1,12),(2,10),(3,11),(4,19),(5,20),(6,21),(7,18),(8,16),(9,17),(13,22),(14,23),(15,24)], [(1,8),(2,9),(3,7),(4,23),(5,24),(6,22),(10,17),(11,18),(12,16),(13,21),(14,19),(15,20)], [(2,24),(3,22),(5,9),(6,7),(10,15),(11,13),(17,20),(18,21)], [(1,23),(3,22),(4,8),(6,7),(11,13),(12,14),(16,19),(18,21)], [(1,8),(2,20),(3,11),(4,23),(5,15),(6,18),(7,21),(9,10),(12,19),(13,22),(14,16),(17,24)], [(1,12),(2,9),(3,21),(4,16),(5,24),(6,13),(7,11),(8,19),(10,20),(14,23),(15,17),(18,22)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)]])
G:=TransitiveGroup(24,381);
Matrix representation of C24⋊A4 ►in GL12(ℤ)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 |
,
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
,
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
,
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 |
,
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
,
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
,
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(12,Integers())| [1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,1,0],[0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0],[0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1],[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0],[1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0] >;
C24⋊A4 in GAP, Magma, Sage, TeX
C_2^4\rtimes A_4
% in TeX
G:=Group("C2^4:A4");
// GroupNames label
G:=SmallGroup(192,1009);
// by ID
G=gap.SmallGroup(192,1009);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,2,-2,2,4371,850,185,2524,2111,333,1027,1784]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^3=1,a*b=b*a,f*a*f=a*c=c*a,a*d=d*a,e*a*e=a*c*d,a*g=g*a,e*b*e=b*c=c*b,f*b*f=b*d=d*b,b*g=g*b,g*c*g^-1=c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,g*d*g^-1=c,g*e*g^-1=e*f=f*e,g*f*g^-1=e>;
// generators/relations
Export
Character table of C24⋊A4 in TeX